Exercise 6

Evaluate the line integral, where C is the given curve.

$$
\int_{C} e^{x} d x, \quad C \text { is the arc of the curve } x=y^{3} \text { from }(-1,-1) \text { to }(1,1)
$$

Solution

Parameterize the curve by setting $y=t$, which then means $x=t^{3}$, and having $-1 \leq t \leq 1$. With this parameterization in t, the line integral becomes

$$
\begin{aligned}
\int_{C} e^{x} d x & =\int_{-1}^{1} e^{x(t)} \frac{d x}{d t} d t \\
& =\int_{-1}^{1} e^{t^{3}}\left(3 t^{2}\right) d t
\end{aligned}
$$

Make the following substitution.

$$
\begin{aligned}
u & =t^{3} \\
d u & =3 t^{2} d t
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\int_{C} e^{x} d x & =\int_{(-1)^{3}}^{(1)^{3}} e^{u} d u \\
& =\int_{-1}^{1} e^{u} d u \\
& =\left.e^{u}\right|_{-1} ^{1} \\
& =e-e^{-1}
\end{aligned}
$$

